3.19 \(\int \frac{\sec (e+f x) (a+a \sec (e+f x))^2}{(c-c \sec (e+f x))^5} \, dx\)

Optimal. Leaf size=121 \[ -\frac{2 \tan (e+f x) (a \sec (e+f x)+a)^2}{315 c^2 f (c-c \sec (e+f x))^3}-\frac{2 \tan (e+f x) (a \sec (e+f x)+a)^2}{63 c f (c-c \sec (e+f x))^4}-\frac{\tan (e+f x) (a \sec (e+f x)+a)^2}{9 f (c-c \sec (e+f x))^5} \]

[Out]

-((a + a*Sec[e + f*x])^2*Tan[e + f*x])/(9*f*(c - c*Sec[e + f*x])^5) - (2*(a + a*Sec[e + f*x])^2*Tan[e + f*x])/
(63*c*f*(c - c*Sec[e + f*x])^4) - (2*(a + a*Sec[e + f*x])^2*Tan[e + f*x])/(315*c^2*f*(c - c*Sec[e + f*x])^3)

________________________________________________________________________________________

Rubi [A]  time = 0.230276, antiderivative size = 121, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 32, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.062, Rules used = {3951, 3950} \[ -\frac{2 \tan (e+f x) (a \sec (e+f x)+a)^2}{315 c^2 f (c-c \sec (e+f x))^3}-\frac{2 \tan (e+f x) (a \sec (e+f x)+a)^2}{63 c f (c-c \sec (e+f x))^4}-\frac{\tan (e+f x) (a \sec (e+f x)+a)^2}{9 f (c-c \sec (e+f x))^5} \]

Antiderivative was successfully verified.

[In]

Int[(Sec[e + f*x]*(a + a*Sec[e + f*x])^2)/(c - c*Sec[e + f*x])^5,x]

[Out]

-((a + a*Sec[e + f*x])^2*Tan[e + f*x])/(9*f*(c - c*Sec[e + f*x])^5) - (2*(a + a*Sec[e + f*x])^2*Tan[e + f*x])/
(63*c*f*(c - c*Sec[e + f*x])^4) - (2*(a + a*Sec[e + f*x])^2*Tan[e + f*x])/(315*c^2*f*(c - c*Sec[e + f*x])^3)

Rule 3951

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))
^(n_.), x_Symbol] :> Simp[(b*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(c + d*Csc[e + f*x])^n)/(a*f*(2*m + 1)), x] +
 Dist[(m + n + 1)/(a*(2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(c + d*Csc[e + f*x])^n, x], x]
/; FreeQ[{a, b, c, d, e, f, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && ILtQ[m + n + 1, 0] && NeQ[2
*m + 1, 0] &&  !LtQ[n, 0] &&  !(IGtQ[n + 1/2, 0] && LtQ[n + 1/2, -(m + n)])

Rule 3950

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))
^(n_.), x_Symbol] :> Simp[(b*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(c + d*Csc[e + f*x])^n)/(a*f*(2*m + 1)), x] /
; FreeQ[{a, b, c, d, e, f, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] && NeQ[2*m
 + 1, 0]

Rubi steps

\begin{align*} \int \frac{\sec (e+f x) (a+a \sec (e+f x))^2}{(c-c \sec (e+f x))^5} \, dx &=-\frac{(a+a \sec (e+f x))^2 \tan (e+f x)}{9 f (c-c \sec (e+f x))^5}+\frac{2 \int \frac{\sec (e+f x) (a+a \sec (e+f x))^2}{(c-c \sec (e+f x))^4} \, dx}{9 c}\\ &=-\frac{(a+a \sec (e+f x))^2 \tan (e+f x)}{9 f (c-c \sec (e+f x))^5}-\frac{2 (a+a \sec (e+f x))^2 \tan (e+f x)}{63 c f (c-c \sec (e+f x))^4}+\frac{2 \int \frac{\sec (e+f x) (a+a \sec (e+f x))^2}{(c-c \sec (e+f x))^3} \, dx}{63 c^2}\\ &=-\frac{(a+a \sec (e+f x))^2 \tan (e+f x)}{9 f (c-c \sec (e+f x))^5}-\frac{2 (a+a \sec (e+f x))^2 \tan (e+f x)}{63 c f (c-c \sec (e+f x))^4}-\frac{2 (a+a \sec (e+f x))^2 \tan (e+f x)}{315 c^2 f (c-c \sec (e+f x))^3}\\ \end{align*}

Mathematica [A]  time = 0.420944, size = 141, normalized size = 1.17 \[ -\frac{a^2 \csc \left (\frac{e}{2}\right ) \left (2520 \sin \left (e+\frac{f x}{2}\right )-1638 \sin \left (e+\frac{3 f x}{2}\right )-2310 \sin \left (2 e+\frac{3 f x}{2}\right )+1062 \sin \left (2 e+\frac{5 f x}{2}\right )+630 \sin \left (3 e+\frac{5 f x}{2}\right )-108 \sin \left (3 e+\frac{7 f x}{2}\right )-315 \sin \left (4 e+\frac{7 f x}{2}\right )+47 \sin \left (4 e+\frac{9 f x}{2}\right )+3402 \sin \left (\frac{f x}{2}\right )\right ) \csc ^9\left (\frac{1}{2} (e+f x)\right )}{80640 c^5 f} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sec[e + f*x]*(a + a*Sec[e + f*x])^2)/(c - c*Sec[e + f*x])^5,x]

[Out]

-(a^2*Csc[e/2]*Csc[(e + f*x)/2]^9*(3402*Sin[(f*x)/2] + 2520*Sin[e + (f*x)/2] - 1638*Sin[e + (3*f*x)/2] - 2310*
Sin[2*e + (3*f*x)/2] + 1062*Sin[2*e + (5*f*x)/2] + 630*Sin[3*e + (5*f*x)/2] - 108*Sin[3*e + (7*f*x)/2] - 315*S
in[4*e + (7*f*x)/2] + 47*Sin[4*e + (9*f*x)/2]))/(80640*c^5*f)

________________________________________________________________________________________

Maple [A]  time = 0.102, size = 52, normalized size = 0.4 \begin{align*}{\frac{{a}^{2}}{4\,f{c}^{5}} \left ({\frac{1}{5} \left ( \tan \left ({\frac{fx}{2}}+{\frac{e}{2}} \right ) \right ) ^{-5}}-{\frac{2}{7} \left ( \tan \left ({\frac{fx}{2}}+{\frac{e}{2}} \right ) \right ) ^{-7}}+{\frac{1}{9} \left ( \tan \left ({\frac{fx}{2}}+{\frac{e}{2}} \right ) \right ) ^{-9}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(f*x+e)*(a+a*sec(f*x+e))^2/(c-c*sec(f*x+e))^5,x)

[Out]

1/4/f*a^2/c^5*(1/5/tan(1/2*f*x+1/2*e)^5-2/7/tan(1/2*f*x+1/2*e)^7+1/9/tan(1/2*f*x+1/2*e)^9)

________________________________________________________________________________________

Maxima [B]  time = 1.05711, size = 363, normalized size = 3. \begin{align*} -\frac{\frac{a^{2}{\left (\frac{180 \, \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} - \frac{378 \, \sin \left (f x + e\right )^{4}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{4}} + \frac{420 \, \sin \left (f x + e\right )^{6}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{6}} - \frac{315 \, \sin \left (f x + e\right )^{8}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{8}} - 35\right )}{\left (\cos \left (f x + e\right ) + 1\right )}^{9}}{c^{5} \sin \left (f x + e\right )^{9}} + \frac{10 \, a^{2}{\left (\frac{18 \, \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} - \frac{42 \, \sin \left (f x + e\right )^{6}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{6}} + \frac{63 \, \sin \left (f x + e\right )^{8}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{8}} - 7\right )}{\left (\cos \left (f x + e\right ) + 1\right )}^{9}}{c^{5} \sin \left (f x + e\right )^{9}} + \frac{7 \, a^{2}{\left (\frac{18 \, \sin \left (f x + e\right )^{4}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{4}} - \frac{45 \, \sin \left (f x + e\right )^{8}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{8}} - 5\right )}{\left (\cos \left (f x + e\right ) + 1\right )}^{9}}{c^{5} \sin \left (f x + e\right )^{9}}}{5040 \, f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+a*sec(f*x+e))^2/(c-c*sec(f*x+e))^5,x, algorithm="maxima")

[Out]

-1/5040*(a^2*(180*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 - 378*sin(f*x + e)^4/(cos(f*x + e) + 1)^4 + 420*sin(f*x
+ e)^6/(cos(f*x + e) + 1)^6 - 315*sin(f*x + e)^8/(cos(f*x + e) + 1)^8 - 35)*(cos(f*x + e) + 1)^9/(c^5*sin(f*x
+ e)^9) + 10*a^2*(18*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 - 42*sin(f*x + e)^6/(cos(f*x + e) + 1)^6 + 63*sin(f*x
 + e)^8/(cos(f*x + e) + 1)^8 - 7)*(cos(f*x + e) + 1)^9/(c^5*sin(f*x + e)^9) + 7*a^2*(18*sin(f*x + e)^4/(cos(f*
x + e) + 1)^4 - 45*sin(f*x + e)^8/(cos(f*x + e) + 1)^8 - 5)*(cos(f*x + e) + 1)^9/(c^5*sin(f*x + e)^9))/f

________________________________________________________________________________________

Fricas [A]  time = 0.45639, size = 342, normalized size = 2.83 \begin{align*} \frac{47 \, a^{2} \cos \left (f x + e\right )^{5} + 127 \, a^{2} \cos \left (f x + e\right )^{4} + 101 \, a^{2} \cos \left (f x + e\right )^{3} + 11 \, a^{2} \cos \left (f x + e\right )^{2} - 8 \, a^{2} \cos \left (f x + e\right ) + 2 \, a^{2}}{315 \,{\left (c^{5} f \cos \left (f x + e\right )^{4} - 4 \, c^{5} f \cos \left (f x + e\right )^{3} + 6 \, c^{5} f \cos \left (f x + e\right )^{2} - 4 \, c^{5} f \cos \left (f x + e\right ) + c^{5} f\right )} \sin \left (f x + e\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+a*sec(f*x+e))^2/(c-c*sec(f*x+e))^5,x, algorithm="fricas")

[Out]

1/315*(47*a^2*cos(f*x + e)^5 + 127*a^2*cos(f*x + e)^4 + 101*a^2*cos(f*x + e)^3 + 11*a^2*cos(f*x + e)^2 - 8*a^2
*cos(f*x + e) + 2*a^2)/((c^5*f*cos(f*x + e)^4 - 4*c^5*f*cos(f*x + e)^3 + 6*c^5*f*cos(f*x + e)^2 - 4*c^5*f*cos(
f*x + e) + c^5*f)*sin(f*x + e))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} - \frac{a^{2} \left (\int \frac{\sec{\left (e + f x \right )}}{\sec ^{5}{\left (e + f x \right )} - 5 \sec ^{4}{\left (e + f x \right )} + 10 \sec ^{3}{\left (e + f x \right )} - 10 \sec ^{2}{\left (e + f x \right )} + 5 \sec{\left (e + f x \right )} - 1}\, dx + \int \frac{2 \sec ^{2}{\left (e + f x \right )}}{\sec ^{5}{\left (e + f x \right )} - 5 \sec ^{4}{\left (e + f x \right )} + 10 \sec ^{3}{\left (e + f x \right )} - 10 \sec ^{2}{\left (e + f x \right )} + 5 \sec{\left (e + f x \right )} - 1}\, dx + \int \frac{\sec ^{3}{\left (e + f x \right )}}{\sec ^{5}{\left (e + f x \right )} - 5 \sec ^{4}{\left (e + f x \right )} + 10 \sec ^{3}{\left (e + f x \right )} - 10 \sec ^{2}{\left (e + f x \right )} + 5 \sec{\left (e + f x \right )} - 1}\, dx\right )}{c^{5}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+a*sec(f*x+e))**2/(c-c*sec(f*x+e))**5,x)

[Out]

-a**2*(Integral(sec(e + f*x)/(sec(e + f*x)**5 - 5*sec(e + f*x)**4 + 10*sec(e + f*x)**3 - 10*sec(e + f*x)**2 +
5*sec(e + f*x) - 1), x) + Integral(2*sec(e + f*x)**2/(sec(e + f*x)**5 - 5*sec(e + f*x)**4 + 10*sec(e + f*x)**3
 - 10*sec(e + f*x)**2 + 5*sec(e + f*x) - 1), x) + Integral(sec(e + f*x)**3/(sec(e + f*x)**5 - 5*sec(e + f*x)**
4 + 10*sec(e + f*x)**3 - 10*sec(e + f*x)**2 + 5*sec(e + f*x) - 1), x))/c**5

________________________________________________________________________________________

Giac [A]  time = 1.26366, size = 81, normalized size = 0.67 \begin{align*} \frac{63 \, a^{2} \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right )^{4} - 90 \, a^{2} \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right )^{2} + 35 \, a^{2}}{1260 \, c^{5} f \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right )^{9}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+a*sec(f*x+e))^2/(c-c*sec(f*x+e))^5,x, algorithm="giac")

[Out]

1/1260*(63*a^2*tan(1/2*f*x + 1/2*e)^4 - 90*a^2*tan(1/2*f*x + 1/2*e)^2 + 35*a^2)/(c^5*f*tan(1/2*f*x + 1/2*e)^9)